
GIAN Course on Solving Linear Systems and
Computing Generalized Inverses Using Recurrent

Neural Networks
June 09-19, 2025, IIT Indore,

(The Least Squares Problem and SVD)

Sk. Safique Ahmad

June 17, 2025

1 / 136

Second Step of the Algorithm

• The second step operates on the submatrix obtained by ignoring the first row and column.
• Otherwise, it is identical to the first step:

• Compute and apply Householder reflector.
• Identify pivot and possibly swap columns.

• When columns are interchanged, the full columns are swapped, not just the parts in the
submatrix.

• This is equivalent to performing the interchange before the QR process starts.

2 / 136

Case: Matrix Has Full Rank

• If the matrix has full rank, the algorithm terminates after m steps.

• The result is a decomposition:
AΠ = QR

• Where:
• Π is a column permutation matrix,
• Q ∈ Rn×n is orthogonal,
• R ∈ Rn×m is upper triangular and nonsingular.

3 / 136

Case: Matrix Does Not Have Full Rank

• If A does not have full rank, at some step we will encounter τi = 0.

• This occurs when all entries in the remaining submatrix are zero.

• Suppose this occurs after r steps.

• Let Qi ∈ Rn×n denote the reflector used at step i .

4 / 136

Structure of R and Reflectors

• Let RH ∈ Rr×r be the upper triangular part constructed from the first r steps.

• Then:

R =

[
RH ∗
0 0

]
• The diagonal entries of RH are −τ1,−τ2, . . . ,−τr , all nonzero.
• Clearly, rank(R) = r .

5 / 136

Final Form of the Decomposition

• Let:
Q = Q1Q2 · · ·Qr

• Then:
QT = QrQr−1 · · ·Q1

• Therefore:
QTA = R and A = QR

• Since rank(A) = rank(R) = r , we conclude:

rank(A) = r

6 / 136

Theorem 3.3.11

Theorem: Let A ∈ Rn×m with rank r > 0. Then there exist matrices:

• Π ∈ Rm×m: a permutation matrix,

• Q ∈ Rn×n: orthogonal,

• R ∈ Rn×m: upper triangular,

such that:
AΠ = QR

where:

R =

[
RH ∗
0 0

]
, RH ∈ Rr×r is nonsingular.

7 / 136

Least Squares Problem Setup

• Given A ∈ Rn×m, b ∈ Rn, we seek x ∈ Rm that minimizes:

∥Ax − b∥2

• If A has full column rank, the solution is unique.

• If A is rank-deficient (i.e., rank(A) = r < m), the problem has infinitely many
solutions.

8 / 136

QR Decomposition with Column Pivoting

• Apply QR with column pivoting: AΠ = QR

• Q ∈ Rn×n: orthogonal

• R =

[
R1 R2

0 0

]
, where:

• R1 ∈ Rr×r is upper triangular and nonsingular,
• r = rank(A) < m

• Π ∈ Rm×m: permutation matrix

9 / 136

Reduced Least Squares System

• Let y = ΠT x , then:
QRy ≈ b ⇒ Ry ≈ QTb

• Partition y =

[
y1
y2

]
, where:

R =

[
R1 R2

0 0

]
, y1 ∈ Rr , y2 ∈ Rm−r

• Solve:
R1y1 = (QTb)1:r

• y2 is free (arbitrary) ⇒ infinite solutions.

10 / 136

General Solution Form

• General solution to the least squares problem:

x = Π

[
R−1
1 (QTb)1:r

free vector y2

]
• The solution set forms an affine subspace:

x = xparticular + null(A)

• The set of solutions is infinite due to dim(null(A)) = m − r > 0

11 / 136

Minimum Norm Solution

• Among infinite solutions, one may choose the one with minimum ∥x∥2
• This is called the minimum norm least squares solution:

xmin = A†b

where A† is the Moore–Penrose pseudoinverse.

• In QR terms:

xmin = Π

[
R−1
1 (QTb)1:r

0

]

12 / 136

MATLAB Code: Infinite Least Squares Solutions

1 % Rank -deficient matrix A and vector b

2 A = [1 2 3 4; 2 4 6 8; 3 6 9 12]; % rank 2

3 b = [1; 2; 3];

4

5 % QR decomposition with column pivoting

6 [Q, R, P] = qr(A, ’vector ’);

7

8 % Determine rank numerically

9 tol = max(size(A)) * eps(norm(R, ’fro’));

10 r = sum(abs(diag(R)) > tol);

11

12 % Solve R1 * y1 = Q^T * b (first r components)

13 R1 = R(1:r, 1:r);

14 Qt_b = Q’ * b;

15 b1 = Qt_b (1:r);

16 y1 = R1 \ b1;

13 / 136

1 x = zeros(size(A,2), 1); x(P) = y;

2 disp(’Minimum-norm solution:’); disp(x);

14 / 136

Classical Gram-Schmidt Algorithm

• Given linearly independent vectors v1, v2, . . . , vm ∈ Rn

• Produces orthonormal vectors q1, q2, . . . , qm such that:

span{q1, . . . , qi} = span{v1, . . . , vi}, for i = 1, . . . ,m

• Algorithm:

q1 =
v1
∥v1∥

for k = 2 to m

for j = 1 to k − 1

rjk = q⊤j vk

vk = vk − rjkqj

end

rkk = ∥vk∥, qk =
vk
rkk

end 15 / 136

Gram-Schmidt as QR Decomposition

• Let A = [v1, v2, . . . , vm] ∈ Rn×m

• The Gram-Schmidt process gives:
A = QR

where:
• Q = [q1, q2, . . . , qm] is orthonormal (Q⊤Q = I)
• R is upper triangular with entries rjk = q⊤j vk

• Each vk can be written as:

vk =
k∑

j=1

rjkqj

• In matrix form:
A = QR (Gram-Schmidt gives QR)

16 / 136

MATLAB Code for Classical Gram-Schmidt

function [Q, R] = classical_gs(A)

[n, m] = size(A);

Q = zeros(n, m);

R = zeros(m, m);

for k = 1:m

v = A(:,k);

for j = 1:k-1

R(j,k) = Q(:,j)’ * A(:,k);

v = v - R(j,k) * Q(:,j);

end

R(k,k) = norm(v);

Q(:,k) = v / R(k,k);

end

end
17 / 136

Summary

• Classical Gram-Schmidt orthogonalizes vectors sequentially.

• It is numerically unstable for nearly linearly dependent vectors.

• The resulting decomposition A = QR links the process directly to matrix factorization.

• Modified Gram-Schmidt improves numerical stability.

18 / 136

Modified Gram-Schmidt Overview

• Modified Gram-Schmidt (MGS) is a numerically more stable variant of the classical
method.

• Orthogonalizes column by column using updated vectors.

• Better handles near-linear dependence in columns.
• Produces A = QR where:

• Q: orthonormal columns
• R: upper triangular matrix

19 / 136

MATLAB Code: Modified Gram-Schmidt

function [Q, R] = modified_gs(A)

[n, m] = size(A);

Q = zeros(n, m);

R = zeros(m, m);

V = A;

for i = 1:m

R(i,i) = norm(V(:,i));

Q(:,i) = V(:,i) / R(i,i);

for j = i+1:m

R(i,j) = Q(:,i)’ * V(:,j);

V(:,j) = V(:,j) - R(i,j) * Q(:,i);

end

end

end
20 / 136

Example Matrix

• Let

A =

 1 1
10−10 0
0 10−10


• Columns of A are nearly linearly dependent

• Classical Gram-Schmidt fails due to loss of orthogonality

• Modified Gram-Schmidt maintains orthogonality

21 / 136

Numerical Stability Comparison

• Compute Q⊤Q:
• Classical GS: Q⊤Q ̸= I (orthogonality lost)
• Modified GS: Q⊤Q ≈ I

• Stability matters in ill-conditioned problems

• Use ‘norm(Q’*Q - eye(size(Q,2)))‘ in MATLAB to test

22 / 136

Remark

• Modified Gram-Schmidt is more stable than the classical version.

• Especially important when vectors are nearly linearly dependent.

• For numerical work, prefer MGS or Householder QR over classical GS.

23 / 136

Given Vectors

• v1 =


3
−3
3
−3



• v2 =


1
2
3
4


• Define S = span{v1, v2} ⊂ R4

24 / 136

Step (a): Gram-Schmidt Process

u1 = v1

r11 = ∥u1∥ =
√
32 + (−3)2 + 32 + (−3)2 =

√
36 = 6

q1 =
u1
r11

=
1

6


3
−3
3
−3

 =


0.5
−0.5
0.5
−0.5



25 / 136

Continue Gram-Schmidt

r12 = qT1 v2 = [0.5,−0.5, 0.5,−0.5] · [1, 2, 3, 4]T

= 0.5(1) + (−0.5)(2) + 0.5(3) + (−0.5)(4) = −1

u2 = v2 − r12q1 = v2 + q1 =


1.5
1.5
3.5
3.5


r22 = ∥u2∥ =

√
1.52 + 1.52 + 3.52 + 3.52 =

√
32 = 4

√
2

q2 =
u2
r22

=
1

4
√
2


1.5
1.5
3.5
3.5


26 / 136

Step (b): Construct Q and R

Q =


0.5 1.5

4
√
2

−0.5 1.5
4
√
2

0.5 3.5
4
√
2

−0.5 3.5
4
√
2

 , R =

[
6 −1
0 4
√
2

]

Then, V = QR

27 / 136

QR Decomposition Method Comparison

• Let V ∈ R30×20 with entries:

V (i , j) =

(
j

20

)i−1

, i = 1, . . . , 30, j = 1, . . . , 20

• Such matrices are called Vandermonde matrices.

• Highly ill-conditioned:
κ2(V) ≈ 3× 1013

• Indicates columns are nearly linearly dependent.

28 / 136

Numerical Experiment

• Goal: Compare orthogonality of Q from QR decomposition methods.

• Metric: ∥I − Q⊤Q∥2
• IEEE double-precision unit roundoff: u ≈ 10−16

• Expect error for stable methods: ≈ κ(V) · u ≈ 3× 10−3

29 / 136

QR Method Comparison on Vandermonde Matrix

• Comparison of orthogonality error ∥I − Q⊤Q∥2:

Method ∥I − Q⊤Q∥2
Classical Gram-Schmidt 12.4
Modified Gram-Schmidt ≈ 3× 10−4

Householder QR (Reflectors) ≈ 1.9× 10−15

Table: *

QR decomposition results for highly ill-conditioned Vandermonde matrix

30 / 136

Remark

• Classical Gram-Schmidt: fails in preserving orthogonality for ill-conditioned matrices.

• Modified Gram-Schmidt: more stable but still sensitive to ill-conditioning.

• Householder QR: highly stable, preferred in practice.

• Recommendation: Use Householder QR or SVD for high-accuracy applications.

31 / 136

Singular Value Decomposition (SVD),
Moore Penrose Inverse

32 / 136

Bases and Matrices in the SVD

The Singular Value Decomposition is a highlight of linear algebra. A is any m × n matrix,
square or rectangular. Its rank is r . We will diagonalize this A, but not by X−1AX .

The eigenvectors in X have three big problems:

• They are usually not orthogonal,

• there are not always enough eigenvectors, and Ax = λx requires A to be a square matrix.

• The singular vectors of A solve all those problems in a perfect way.

33 / 136

Theorem 4.1.1 (SVD Theorem)

Let A ∈ Rn×m be a nonzero matrix of rank r . Then:
Singular Value Decomposition (SVD) There exist orthogonal matrices:

U ∈ Rn×n, V ∈ Rm×m

and a ”diagonal” matrix:
Σ ∈ Rn×m

such that:
A = UΣV⊤

34 / 136

Structure of the SVD

• U = [u1 u2 . . . un] with U⊤U = In
• V = [v1 v2 . . . vm] with V⊤V = Im
• Σ has the form:

Σ =


σ1

σ2
. . .

σr
0


where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of A.

35 / 136

Geometric Interpretation

• A maps the orthonormal basis vectors of Rm (columns of V) to scaled orthogonal vectors
in Rn (columns of U).

• Each σi represents the stretching factor along the direction vi .

• The rank r of A equals the number of nonzero singular values.

36 / 136

Remark

• Every real matrix A ∈ Rn×m has a Singular Value Decomposition.
• A = UΣV⊤, where:

• U ∈ Rn×n and V ∈ Rm×m are orthogonal,
• Σ ∈ Rn×m is diagonal with singular values.

• The SVD is a fundamental tool in numerical linear algebra, data compression, and PCA.

37 / 136

Theorem (Geometric SVD Theorem)

Let A ∈ Rn×m be a nonzero matrix of rank r . Then:

• There exists an orthonormal basis {v1, . . . , vm} of Rm

• And an orthonormal basis {u1, . . . ,un} of Rn

• And singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0

Such that:
Avi = σiui for i = 1, . . . , r

Avi = 0 for i = r + 1, . . . ,m

ATui = σivi for i = 1, . . . , r

ATui = 0 for i = r + 1, . . . , n

38 / 136

Geometric Interpretation

• A maps the unit vectors vi in Rm to scaled orthogonal vectors σiui in Rn.

• The first r directions are scaled by σi > 0, and the rest are mapped to 0.

• The image of the unit sphere in Rm under A is a hyperellipse in Rn.

39 / 136

Exercise 4.1.5: From Algebraic SVD to Geometric SVD

Let A = UΣV⊤ be the SVD of A, where:

• Columns of V = [v1, . . . , vm]

• Columns of U = [u1, . . . ,un]

Then:
Avi = UΣV⊤vi = σiui (i = 1, . . . , r)

• The matrix multiplication AV = UΣ implies that each vi is mapped to σiui .

• When σi = 0, Avi = 0.

Thus, the geometric form follows directly from the standard SVD expression.

40 / 136

SVD and the Four Fundamental Subspaces

The SVD provides orthonormal bases for the fundamental subspaces of A ∈ Rn×m.

• R(A) = Col(A) = span{u1, . . . ,ur} ⊆ Rn

• N (A) = Null(A) = span{vr+1, . . . , vm} ⊆ Rm

• R(A⊤) = Row(A) = span{v1, . . . , vr} ⊆ Rm

• N (A⊤) = Left Null Space = span{ur+1, . . . ,un} ⊆ Rn

These follow directly from the SVD:
A = UΣV⊤

41 / 136

Corollary: Rank-Nullity Relation

Corollary 4.1.9 Let A ∈ Rn×m. Then:

dim(R(A)) + dim(N (A)) = m

• That is, the sum of the dimensions of the column space and the null space equals the
number of columns.

• This result, also known as the Rank-Nullity Theorem, follows from the orthogonality
and completeness of the columns of V ∈ Rm×m.

• Similarly, dim(R(A⊤)) + dim(N (A⊤)) = n.

42 / 136

(a) Structure of Rank-1 Matrix

Proof: Let A ∈ Rn×m have rank 1.

• Then all columns of A lie in Range(A) = span(u1).

• Choose ∥u1∥ = 1, then A = u1wT for some w ∈ Rm.

• Define v1 =
w

∥w∥ , σ1 = ∥w∥, so:
A = σ1u1v

T
1

43 / 136

(b) Orthonormal Extension

• Extend u1 to an orthonormal basis of Rn: U = [u1 · · ·] ∈ Rn×n

• Similarly, extend v1 to V = [v1 · · ·] ∈ Rm×m

• Define:

Σ =

σ1 0 · · ·
0 0 · · ·
...

...


n×m

⇒ A = UΣV T

• This gives the SVD of a rank-1 matrix.

44 / 136

(c) Leading Singular Value and Vector

Let A ∈ Rn×m, rank(A) = r > 1

• Let v1 maximize ∥Av∥2 over unit vectors.

• Then u1 =
Av1

∥Av1∥ , and define:

σ1 = ∥Av1∥ = ∥A∥2
• Let U = [u1 · · ·], V = [v1 · · ·], define:

B = UTAV =

[
σ1 zT

0 A1

]
⇒ A = UBV T

45 / 136

(d) Showing z = 0

• Suppose B =

[
σ1 zT

0 A1

]
• Take x =

[
cos θ
sin θw

]
, ∥w∥ = 1

• Then ∥Bx∥2 = σ2
1 cos

2 θ + ∥zTw∥2 sin2 θ + ∥A1w∥2 sin2 θ
• Since σ1 is the largest singular value, optimization implies z = 0

46 / 136

(e) Completing the SVD Inductively

• Since z = 0, B =

[
σ1 0
0 A1

]
• rank(A1) = r − 1. By induction, SVD of A1 = U1Σ1V

T
1

• Embed into full SVD of A as:

A = U

[
σ1 0
0 Σ1

]
V T

• This gives an SVD for general A ∈ Rn×m of rank r .

47 / 136

Theorem 4.1.10: Condensed SVD

Condensed Singular Value Decomposition (SVD)
Let A ∈ Rn×m be a nonzero matrix of rank r . Then:
Condensed SVD Form There exist:

• Ur ∈ Rn×r with orthonormal columns (U⊤
r Ur = Ir)

• Vr ∈ Rm×r with orthonormal columns (V⊤
r Vr = Ir)

• A diagonal matrix Σr ∈ Rr×r with positive entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0

such that:
A = UrΣrV

⊤
r

48 / 136

Exercise: Proving the Condensed SVD

• Start from the full SVD:
A = UΣV⊤

where U ∈ Rn×n, Σ ∈ Rn×m, V ∈ Rm×m

• Partition as:

U = [Ur Ū], Σ =

[
Σr 0
0 0

]
, V = [Vr V̄]

• Then:
A = UΣV⊤ = UrΣrV

⊤
r

by removing the zero blocks.

49 / 136

Example: Compute the SVD of A =

[
3 0
4 5

]

50 / 136

The rank is r = 2, so A has two positive singular values σ1 and σ2. We will find:
- σ1 > λmax = 5 - σ2 < λmin = 3
Begin by computing ATA and AAT :

ATA =

[
3 4
0 5

]T [
3 0
4 5

]
=

[
25 20
20 25

]
, AAT =

[
9 12
12 41

]

Both matrices have the same trace (50) and determinant (225). Their eigenvalues are:
51 / 136

σ2
1 = 45, σ2

2 = 5⇒ σ1 =
√
45, σ2 =

√
5

Then σ1σ2 = 15, which is the determinant of A.
Now, we find the eigenvectors of ATA:
For σ2

1 = 45: [
25 20
20 25

] [
1
1

]
= 45

[
1
1

]
⇒ v1 =

1√
2

[
1
1

]
For σ2

2 = 5: [
25 20
20 25

] [
1
−1

]
= 5

[
1
−1

]
⇒ v2 =

1√
2

[
1
−1

]

52 / 136

Then we compute ui =
Avi
σi

to get the columns of U.

This gives the full SVD: A = UΣV T .
The right singular vectors are:

v1 =
1√
2

[
1
1

]
, v2 =

1√
2

[
1
−1

]
Now compute:

Av1 = A · 1√
2

[
1
1

]
=

1√
2

[
3
4

]
+

1√
2

[
0
5

]
=

1√
2

[
3
9

]
=
√
45 · 1√

10

[
1
3

]
= σ1u1

Av2 = A · 1√
2

[
1
−1

]
=

1√
2

[
3
4

]
− 1√

2

[
0
5

]
=

1√
2

[
3
−1

]
=
√
5 · 1√

10

[
3
−1

]
= σ2u2

53 / 136

This gives:

u1 =
1√
10

[
1
3

]
, u2 =

1√
10

[
3
−1

]
The singular value decomposition is:

A = UΣV T

Where:

U =
1√
10

[
1 3
3 −1

]
, Σ =

[√
45 0

0
√
5

]
, V =

1√
2

[
1 1
1 −1

]
(7)

U and V contain orthonormal bases for the column space and row space of A. These bases
diagonalize A:

AV = UΣ⇒ UTAV = Σ

54 / 136

A as a Sum of Rank-One Matrices

σ1u1v
T
1 + σ2u2v

T
2 =

√
45 · 1√

10

[
1
3

]
· 1√

2

[
1 1

]
+
√
5 · 1√

10

[
3
−1

]
· 1√

2

[
1 −1

]
=

√
45√
20

[
1
3

] [
1 1

]
+

√
5√
20

[
3
−1

] [
1 −1

]
= A

Consider:

A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



55 / 136

Observations:

• All eigenvalues of A are 0.

• Only one eigenvector: (1, 0, 0, 0)T .

• Singular values: σ = 3, 2, 1, 0

• Singular vectors are columns of the identity matrix.

This example shows how the SVD provides much more structural insight than the
eigen-decomposition, especially for non-symmetric or defective matrices.

56 / 136

SVD Setup

Let A ∈ Rn×m with rank r , and let:
A = UΣV T

where:

• U ∈ Rn×n, V ∈ Rm×m are orthogonal,

• Σ =


σ1

. . .

σr
0

 ∈ Rn×m

• σ1 ≥ σ2 ≥ · · · ≥ σr > 0

57 / 136

Transforming the Problem

We want to solve the least squares problem:

min
x
∥Ax − b∥2

Using the orthogonality of U and V , let:

c = UTb, y = V T x

Then:
∥Ax − b∥2 = ∥UΣV T x − b∥2 = ∥Σy − c∥2

58 / 136

Minimizing the Residual

The residual becomes:

∥Σy − c∥22 =
r∑

i=1

(σiyi − ci)
2 +

n∑
i=r+1

c2i

This is minimized when:
yi =

ci
σi
, i = 1, . . . , r

yr+1, . . . , ym arbitrary (do not affect residual)

59 / 136

Minimum Norm Solution

To find the solution x with minimal ∥x∥2, we must minimize ∥y∥2.
This is achieved when:

yr+1 = · · · = ym = 0

Hence, the minimum-norm least-squares solution is:

x = Vy =
r∑

i=1

ci
σi
vi

or equivalently:
x = A+b

where A+ = VΣ+UT is the Moore-Penrose pseudoinverse.

60 / 136

Moore-Penrose Pseudoinverse

Let A ∈ Rn×m be a matrix of rank r , with SVD:

A = UΣV T

Then the Moore-Penrose pseudoinverse A† is given by:

A† = VΣ†UT

where Σ† ∈ Rm×n is formed by:

Σ† =


1/σ1

. . .

1/σr
0


with σ1, . . . , σr > 0 the nonzero singular values of A.

61 / 136

Exercise– Matrix Form of Pseudoinverse

Given the full SVD of A:
A = UΣV T

Then:
A†U = VΣ†

Because U is orthogonal:
A† = VΣ†UT

This representation is exact and satisfies all four Moore-Penrose conditions.

62 / 136

Condensed Form of the SVD

Let Ur ∈ Rn×r , Vr ∈ Rm×r denote the first r columns of U and V , and Σr ∈ Rr×r the
diagonal matrix of nonzero singular values.
Then:

A = UrΣrV
T
r

A† = VrΣ
−1
r UT

r

This form is efficient and commonly used in numerical computation.

63 / 136

Why Use the Pseudoinverse?

• Solves the least-squares problem:

min
x
∥Ax − b∥2 ⇒ x = A†b

• Works even when A is not full-rank.

• Provides the minimum-norm solution when there are infinitely many.

• The pseudoinverse is essential in data fitting, control theory, and machine learning.

64 / 136

Exercise: Moore-Penrose Characterization

Theorem: Let A ∈ Rn×m, and let B ∈ Rm×n. Then B = A† if and only if:

(1) ABA = A

(2) BAB = B

(3) (AB)T = AB

(4) (BA)T = BA

Proof Outline:

• If B = A† from SVD, all four properties hold.

• Conversely, any matrix B satisfying these four conditions must be A†.

65 / 136

Setup: SVD of A

Let A ∈ Rn×m with full column rank m, and let

A = UΣV T

be the singular value decomposition, where:

• U ∈ Rn×n, UTU = In
• V ∈ Rm×m, V TV = Im

• Σ =

[
diag(σ1, . . . , σm)

0

]
∈ Rn×m

66 / 136

SVDs of Related Matrices

Matrix SVD Expression Singular Values

ATA VΣTΣV T σ2
i

(ATA)−1 V (ΣTΣ)−1V T 1/σ2
i

(ATA)−1AT VΣ−1UT 1/σi

A(ATA)−1 UΣ−1V T 1/σi

67 / 136

Observations

• ATA and (ATA)−1 are symmetric and positive definite.

• (ATA)−1AT = A†: the Moore-Penrose pseudoinverse of A.

• A(ATA)−1 is the pseudoinverse of AT .

• All SVDs use the same orthogonal matrices U and V , but scale differently.

68 / 136

Diagonal Structure of ATA and AAT

We always start with ATA and AAT . They are diagonal (with easy v ’s and u’s):

ATA =


0 0 0 0
0 1 0 0
0 0 4 0
0 0 0 9

 , AAT =


1 0 0 0
0 4 0 0
0 0 9 0
0 0 0 0


The eigenvalues of ATA (and AAT) are σ2 = 9, 4, 1 (nonzero), corresponding to singular
values σ1 = 3, σ2 = 2, σ3 = 1.

69 / 136

Their corresponding orthonormal eigenvectors (in order of decreasing singular values) are:

U =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 , Σ =


3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0

 , V =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


The first columns u1 and v1 have 1’s in positions 3 and 4. Then the matrix u1σ1v

T
1 picks out

the largest number in A, which is A3,4 = 3.
Thus the SVD of A is:

A = UΣV T = 3u1v
T
1 + 2u2v

T
2 + 1u3v

T
3

70 / 136

Effect of Removing a Zero Row

Suppose we remove the last row of A (which is entirely zeros). Then A becomes a 3× 4
matrix and AAT becomes 3× 3. Its fourth row and column disappear.
However, the eigenvalues of ATA and AAT remain the same: λ = 1, 4, 9, so the singular values
are still σ = 3, 2, 1. We just remove the last row of Σ, and the last row and column of U:

A3×4 = U3×3Σ3×4V
T
4×4

The SVD naturally accommodates rectangular matrices.

71 / 136

Stability of Singular Values vs. Eigenvalue Instability

The 4× 4 matrix A provides a powerful illustration of the instability of eigenvalues. Suppose
the (4, 1) entry of A is changed slightly—from 0 to 1

60,000 .
Consider the matrix:

A =


0 1 0 0
0 0 2 0
0 0 0 3
1

60,000 0 0 0


This small change in the (4, 1) entry (only 1/60,000) creates a much larger effect in the
eigenvalues of A. Originally, with a zero in the (4, 1) position, the eigenvalues of A were all
zero:

λ = 0, 0, 0, 0

After the change, the eigenvalues move to four points on a circle in the complex plane
centered at the origin, with radius 1

10 :

λ =
1

10
,
1

10
i ,− 1

10
,− 1

10
i

This dramatic movement of eigenvalues due to a tiny change in A illustrates the
instability of eigenvalues when AAT is far from ATA.

72 / 136

At the other extreme, when ATA = AAT (i.e., A is a **normal matrix**), the eigenvectors of
A are orthogonal, and the eigenvalues are completely stable.
Singular Values Are Stable.
By contrast, the singular values of A remain stable under small perturbations. In this case, the
new singular values are:

σ = 3, 2, 1,
1

60,000

The singular vectors (U and V) remain essentially unchanged. The fourth piece of the SVD is:

σ4u4v
T
4 =

1

60,000
u4v

T
4

—mostly zeros, except for the new small entry.

73 / 136

Singular Vectors of A and Eigenvectors of S = ATA

Equations (5)–(6) showed that the right singular vectors vi of A are eigenvectors qi of
S = ATA. The eigenvalues λi of S are exactly σ2

i , where σi are the singular values of A. The
rank r of S equals the rank of A.
The SVD produces beautiful, parallel, orthonormal sets:

• {qi}: orthonormal eigenvectors of S = ATA

• {vi}: right singular vectors of A (equal to qi)

• {ui}: left singular vectors of A

74 / 136

Motivation for Revisiting the SVD Derivation.

We revisit this to address two reasons:

1. If λ is a repeated eigenvalue of S , we must find two orthonormal eigenvectors
corresponding to it.

2. We want to understand how SVD successively picks off rank-one terms: σ1u1v
T
1 , then

σ2u2v
T
2 , etc.—each ordered by importance.

75 / 136

Variational Characterization of λ1 and σ1

Largest eigenvalue λ1 of S = ATA:

λ1 = max
∥x∥=1

xTSx = max
∥x∥=1

xTATAx = max
∥x∥=1

∥Ax∥2

The maximizer is the eigenvector x = q1 (also v1), and Sq1 = λ1q1.
Largest singular value σ1 of A:

σ1 = max
∥x∥=1

∥Ax∥ =
√
λ1

Again, the maximizing vector is x = v1, and Av1 = σ1u1.
This is how SVD identifies the dominant direction in which A acts—picking the vector v1
along which A stretches the most.

76 / 136

One-at-a-Time Approach for λ2 and σ2

The same variational approach used to find λ1 and σ1 also applies to the second eigenvalue
and singular value:

λ2 = max
x⊥q1
x ̸=0

xTSx

xT x
(winning x is q2) (10)

σ2 = max
x⊥v1
x ̸=0

∥Ax∥
∥x∥

(winning x is v2) (11)

When S = ATA, we find that λ1 = σ2
1 and λ2 = σ2

2. Why does this strategy succeed?

77 / 136

Rayleigh Quotient and the Eigenvalue Problem

Begin with the Rayleigh quotient:

r(x) =
xTSx

xT x

To find the x that maximizes r(x), we compute the gradient of r(x) and set the derivatives
∂r
∂xi

= 0. Though messy, the result is a clean vector equation:

Sx = r(x)x (12)

This means the maximizing x is an eigenvector of S , and r(x) reaches its maximum at the
largest eigenvalue λ1.

78 / 136

Connection to Singular Values

Now observe that:

∥Ax∥ =
√
xTATAx =

√
xTSx

So maximizing ∥Ax∥/∥x∥ is the same as maximizing
√

xTSx/xT x . Therefore, the maximizer
x = v1 from equation (9) is the same as q1 from (8), and σ1 =

√
λ1.

79 / 136

Orthogonality and the Search for q2

We now explain why q2 (and v2) are the solutions to (10) and (11). Because they are
orthogonal to q1 (and v1), they lie in the subspace orthogonal to the top singular vector.
Choose any orthogonal matrix Q1 such that:

Q1 = [q1 q2 . . . qn]

where the columns q2, . . . , qn are orthonormal and orthogonal to q1. Then:

SQ1 =
[
Sq1 Sq2 . . . Sqn

]
=
[
λ1q1 Sq2 . . . Sqn

]
Representing S in this new basis:

QT
1 SQ1 =

[
λ1 wT

w Sn−1

]
(13)

80 / 136

Because S is symmetric, so is QT
1 SQ1, which forces w = 0, and thus:

QT
1 SQ1 =

[
λ1 0
0 Sn−1

]
This isolates Sn−1 as a smaller symmetric matrix (dimension n− 1), in which we can now solve
for its top eigenvalue λ2 and eigenvector q2.

81 / 136

By Induction or Recursion

We can now repeat this process:
ameChoose x orthogonal to q1, q2, . . . , qk−1Maximize xTSx/xT xThe result is qk , the kth

eigenvector, and the maximum value is λk

This iterative or inductive construction yields the complete orthonormal eigenbasis
{q1, . . . , qn} and eigenvalues {λ1, . . . , λn}, proving the **Spectral Theorem**: every
symmetric matrix S can be diagonalized as:

S = QΛQT

82 / 136

The Same Logic for SVD

Exactly the same reasoning applies to the SVD of A. Once v1 is found (the direction that A
stretches the most), we constrain our search for the next singular vector to the subspace
orthogonal to v1, then v2, and so on—just like in the eigenvalue case.
This recursive procedure gives the complete SVD:

A = UΣV T

Each piece σiuiv
T
i corresponds to a direction and strength of action by A, building the full

picture one direction at a time.

83 / 136

Next: Computing the Singular Values and Vectors

In the next section, we’ll ask: How are the λi and σi actually computed in practice? And how
does this relate to the **geometry of an ellipse** and the **compression of images** by SVD?

84 / 136

Computing the Eigenvalues of S and the SVD of A

The singular values σi of A are the square roots of the eigenvalues λi of S = ATA.

This crucial connection ties the Singular Value Decomposition (SVD) directly to the symmetric
eigenvalue problem—a good thing, because symmetric matrices are stable and well-behaved.

85 / 136

Avoiding the Cost of Squaring

Even though S = ATA gives us the λi , computing S explicitly can be expensive and
numerically unstable (squaring magnifies errors). So instead of forming S directly, we work
with A using techniques that preserve its singular values.

86 / 136

Orthogonal Similarity: Tridiagonal Form for S

The first idea is to reduce S to a simpler matrix with the same eigenvalues. This is done by a
similarity transformation:

S ′ = Q−1SQ = QTSQ (when Q is orthogonal)

Since QT = Q−1, this transformation preserves eigenvalues, and because S is symmetric, S ′ is
also symmetric. In particular, we aim to choose Q so that QTSQ is tridiagonal—a symmetric
matrix with nonzero entries only on the main diagonal and the two adjacent diagonals.
Section 11.3 discusses how to construct such a Q using a series of 2× 2 Givens rotations or
Householder reflections.

87 / 136

Bidiagonalization for A: Two Orthogonal Matrices

What is the SVD analog of this? For A, we do not want to change its singular values σi . We
use two orthogonal matrices, Q1 and Q2, such that:

A′ = QT
1 AQ2

Then:

(A′)TA′ = (QT
1 AQ2)

T (QT
1 AQ2) = QT

2 ATQ1Q
T
1 AQ2 = QT

2 SQ2

88 / 136

Since Q2 is orthogonal, the eigenvalues of S and QT
2 SQ2 are the same. So the singular values

of A remain unchanged. The big advantage here is that we can reduce A to a **bidiagonal
matrix**—nonzero entries only on the main diagonal and the first superdiagonal.

QT
1 AQ2 = bidiagonal matrix

This step is a core part of practical SVD algorithms. It reduces the complexity of the problem
while preserving the structure we care about (the σi).

89 / 136

Bidiagonal vs. Tridiagonal: A Neat Connection

This reduction beautifully mirrors the process for symmetric matrices:

(bidiagonal)T · (bidiagonal) = tridiagonal

So reducing A to bidiagonal form gives ATA in tridiagonal form—another instance of the
strong relationship between the SVD and the symmetric eigenvalue problem.

90 / 136

Final Step: Diagonalizing

The last step is to diagonalize these reduced matrices—transform the tridiagonal (for S) or
bidiagonal (for A) matrix into a fully diagonal form Λ or Σ. This requires more advanced
iterative techniques, including:

•••• QR algorithm (for eigenvalues)

• Divide-and-conquer methods

• Implicitly shifted QR for faster convergence

The difficulty of this problem is rooted in solving the characteristic polynomial:

det(S − λI) = 0

This is a degree-n polynomial, where n might be in the hundreds or thousands. No closed-form
solutions exist for large n, but modern algorithms approach the diagonal form iteratively and
efficiently.

91 / 136

Built-In Commands

All of this is hidden inside simple commands in most numerical software:

• eig(S) finds the eigenvalues λi

• svd(A) computes the full singular value decomposition A = UΣV T

These functions internally use orthogonal transformations to reduce A or S to bidiagonal or
tridiagonal form, then iterate toward the diagonal.

92 / 136

Remark

While we often think of SVD as a mysterious black box, the path to computing it is highly
structured:

1. Reduce A to bidiagonal form using orthogonal matrices.

2. Use iterative methods to diagonalize the bidiagonal matrix.

The connection to the symmetric eigenvalue problem through S = ATA is central, and the
stability of singular values—unlike the potential instability of eigenvalues—makes SVD a
powerful and reliable tool for numerical linear algebra.

93 / 136

Review of the Key Ideas

1. The SVD factors a matrix A into UΣV T , with r singular values σ1 ≥ · · · ≥ σr > 0.

2. The squared singular values σ2
1, . . . , σ

2
r are the nonzero eigenvalues of both AAT and

ATA.

3. The orthonormal columns of U and V are the eigenvectors of AAT and ATA, respectively.
4. These columns form orthonormal bases for the four fundamental subspaces of A:

• Col(A) and Null(AT) from U
• Row(A) and Null(A) from V

5. These bases diagonalize the matrix: Avi = σiui for i ≤ r , which gives AV = UΣ.

6. The SVD expresses A as a sum of rank-one matrices:

A = σ1u1v
T
1 + · · ·+ σrurv

T
r

where σ1 is the maximum of the ratio:

max
x ̸=0

∥Ax∥
∥x∥

94 / 136

Worked Examples

1. Orthogonal columns

2. Orthonormal columns

3. Triangular columns

Where do the rank, the pivots, and the singular values of A come into this picture?
Solution: These three factorizations are basic to linear algebra, pure or applied:

95 / 136

1. Singular Value Decomposition: A = UΣV T

2. Gram-Schmidt Orthogonalization: A = QR

3. Gaussian Elimination: A = LU

You might prefer to separate out singular values σi , heights hi , and pivots di :

1. A = UΣV T with unit vectors in U and V . The singular values σi are in Σ.

2. A = QHR with unit vectors in Q and diagonal 1’s in R. The heights hi are in H.

3. A = LDU with diagonal 1’s in L and U. The pivots di are in D.

96 / 136

Each hi tells the height of column i above the plane of columns 1 to i − 1. The volume of the
full n-dimensional box (where r = m = n) comes from A = UΣV T = LDU = QHR:

| detA| = |product of σi | = |product of di | = |product of hi |

97 / 136

Solution: Start from the SVD: A = UΣV T . Remember that multiplying by an orthogonal
matrix does not change length:

∥Qx∥ = ∥x∥ because ∥Qx∥2 = xTQTQx = xT x = ∥x∥2.

This applies to Q = U and Q = V T . In between is the diagonal matrix Σ.
For Ax :

∥Ax∥ = ∥UΣV T x∥ = ∥ΣV T x∥ ≤ σ1∥V T x∥ = σ1∥x∥.

98 / 136

An eigenvector has Ax = λx . So, the above inequality implies:

|λ|∥x∥ ≤ σ1∥x∥.

Therefore, |λ| ≤ σ1.
Also, apply this to the unit vector x = (1, 0, . . . , 0). Now Ax is the first column of A. Then by
the inequality, this column has length ≤ σ1. Every entry must have |aij | ≤ σ1.

99 / 136

Thus, equation (14) shows that the maximum value of ∥Ax∥
∥x∥ equals σ1.

Section 11.2 will explain how the ratio σmax
σmin

governs the roundoff error in solving Ax = b.
MATLAB warns you if this “condition number” is large. Then x is unreliable.

100 / 136

QR-Algorithm for computing Eigenvalues

The QR Algorithm
The QR algorithm computes a Schur decomposition of a matrix.
It is certainly one of the most important algorithms in eigenvalue computations [?]. However,
it is applied to dense (or: full) matrices only.

101 / 136

The QR algorithm consists of two separate stages. First, by means of a similarity
transformation, the original matrix is transformed in a finite number of steps to Hessenberg
form or—in the Hermitian/symmetric case—to real tridiagonal form.

This first stage of the algorithm prepares its second stage: the actual QR iterations that are
applied to the Hessenberg or tridiagonal matrix. The overall complexity (in terms of
floating-point operations) of the algorithm is O(n3), which, as we will see, is not entirely
trivial to obtain.

102 / 136

The major limitation of the QR algorithm is that already the first stage usually generates
complete fill-in for general sparse matrices. It can therefore not be applied to large sparse
matrices, simply because of excessive memory requirements. On the other hand, the QR
algorithm computes all eigenvalues (and eventually eigenvectors), which is rarely desired in
sparse matrix computations anyway.

103 / 136

The treatment of the QR algorithm in these lecture notes on large-scale eigenvalue
computation is justified in two respects. First, there are of course large or even huge dense
eigenvalue problems. Second, the QR algorithm is employed in most other algorithms to solve
“internal” small auxiliary eigenvalue problems.

104 / 136

The Basic QR Algorithm

In 1958, Rutishauser [?] of ETH Zurich experimented with a similar algorithm to the one we
are about to present, but based on the LR factorization, i.e., Gaussian elimination without
pivoting. That algorithm was not successful, as the LR factorization (nowadays called LU
factorization) is not stable without pivoting.
Francis [?] noticed that the QR factorization would be the preferred choice and devised the
QR algorithm with many of the bells and whistles used nowadays.

105 / 136

Before presenting the complete picture, we start with a basic iteration, given in Algorithm 4.1,
discuss its properties, and improve on it step by step until we arrive at Francis’ algorithm.
We notice first that

Ak = RkQk = Q∗
kAk−1Qk , (1)

and hence Ak and Ak−1 are unitarily similar. The matrix sequence {Ak} converges (under
certain assumptions) towards an upper triangular matrix [?].
Let us assume that...

106 / 136

Algorithm 4.1: Basic QR Algorithm

Let A ∈ Cn×n. This algorithm computes an upper triangular matrix T and a unitary matrix U
such that

A = UTU∗

is the Schur decomposition of A. Basic QR Algorithm
[Set A0 := A and U0 := I k = 1, 2, . . . Compute QR factorization: Ak−1 = QkRk Update
matrix: Ak := RkQk Update unitary: Uk := Uk−1Qk Set T := A∞ and U := U∞

107 / 136

Assume that the eigenvalues are mutually different in magnitude, so we can number them such
that

|λ1| > |λ2| > · · · > |λn|.

Then—as we will show in Chapter 8—the elements of Ak below the diagonal converge to zero
as

|a(k)ij | = O

(∣∣∣∣λi

λj

∣∣∣∣k
)
, i > j . (2)

108 / 136

From equation (4.1) we observe:

Ak = Q∗
kAk−1Qk = Q∗

kQ
∗
k−1Ak−2Qk−1Qk = · · · = Q∗

k · · ·Q∗
1A0Q1 · · ·Qk , (3)

and hence

Ak = U∗
kA0Uk ,

where Uk = Q1Q2 · · ·Qk . With the same assumption on the eigenvalues, the sequence Ak

converges to an upper triangular matrix, and Uk converges to the matrix of Schur vectors.

109 / 136

We conduct two Matlab experiments to illustrate the convergence rate given in
Equation (4.2). To that end, we construct a random 4× 4 matrix with eigenvalues 1, 2, 3, and
4. The matrix A0 is formed via similarity transformation of the diagonal matrix
D = diag(4, 3, 2, 1):

1 ([4 3 2 1]); rand(’seed’,0); format short e S = rand(4); S = (S - 0.5) * 2; A = S

* D / S;

2 for i = 1:20 [Q, R] = qr(A); A = R * Q; end

This iteration yields a sequence of matrices A(k). Below are the first few iterates:

110 / 136

A(0) =


−4.4529e− 01 4.9063e + 00 1.3354e + 01 −6.6617e + 00
−5.2052e + 00 1.6107e + 00 1.8630e + 00 2.5660e− 01
1.5265e− 01 1.4907e + 00 −8.7871e− 01 1.6668e + 00
−6.0021e− 02 −1.4130e + 00 9.3153e− 01 2.0428e + 00



A(1) =


−6.3941e + 00 5.9284e + 00 −1.5294e + 00 1.9850e− 01
2.4815e− 01 4.7396e + 00 1.1945e + 01 −7.0043e + 00
−2.8484e + 00 −2.2056e + 01 6.5900e + 00 1.2184e + 00
4.9975e− 01 2.3126e + 01 −2.1236e + 00 6.3036e + 00



111 / 136

A(2) =


4.7396e + 00 1.4907e + 00 −2.1236e + 00 2.3126e + 01
−4.3101e − 01 2.4307e + 00 2.2544e + 00 −8.2867e − 01
1.2803e − 01 2.4287e − 01 1.6398e + 00 −1.8290e + 00
−4.8467e − 02 −5.8164e − 02 −1.0994e − 01 1.1899e + 00



A(3) =


4.3289e + 00 1.0890e + 00 −3.9478e + 00 −2.2903e + 01
−1.8396e − 01 2.7053e + 00 1.9060e + 00 −1.2062e + 00
6.7951e − 02 1.7100e − 01 1.6852e + 00 2.5267e + 00
1.3063e − 02 2.2630e − 02 7.9186e − 02 1.2805e + 00



A(4) =


4.1561e + 00 7.6418e − 01 −5.1996e + 00 2.2582e + 01
−9.4175e − 02 2.8361e + 00 1.5788e + 00 2.0983e + 00
3.5094e − 02 1.1515e − 01 1.7894e + 00 −2.9819e + 00
−3.6770e − 03 −8.7212e − 03 −5.7793e − 02 1.2184e + 00



112 / 136

A(5) =


4.0763e + 00 5.2922e − 01 −6.0126e + 00 −2.2323e + 01
−5.3950e − 02 2.9035e + 00 1.3379e + 00 −2.5358e + 00
1.7929e − 02 7.7393e − 02 1.8830e + 00 3.2484e + 00
1.0063e − 03 3.2290e − 03 3.7175e − 02 1.1372e + 00



A(6) =


4.0378e + 00 3.6496e − 01 −6.4924e + 00 2.2149e + 01
−3.3454e − 02 2.9408e + 00 1.1769e + 00 2.7694e + 00
9.1029e − 03 5.2173e − 02 1.9441e + 00 −3.4025e + 00
−2.6599e − 04 −1.1503e − 03 −2.1396e − 02 1.0773e + 00



113 / 136

A(7) =


4.0189e + 00 2.5201e − 01 −6.7556e + 00 −2.2045e + 01
−2.1974e − 02 2.9627e + 00 1.0736e + 00 −2.9048e + 00
4.6025e − 03 3.5200e − 02 1.9773e + 00 3.4935e + 00
6.8584e − 05 3.9885e − 04 1.1481e − 02 1.0411e + 00



A(8) =


4.0095e + 00 1.7516e − 01 −6.8941e + 00 2.1985e + 01
−1.5044e − 02 2.9761e + 00 1.0076e + 00 2.9898e + 00
2.3199e − 03 2.3720e − 02 1.9932e + 00 −3.5486e + 00
−1.7427e − 05 −1.3602e − 04 −5.9304e − 03 1.0212e + 00



114 / 136

A(9) =


4.0048e + 00 1.2329e − 01 −6.9655e + 00 −2.1951e + 01
−1.0606e − 02 2.9845e + 00 9.6487e − 01 −3.0469e + 00
1.1666e − 03 1.5951e − 02 1.9999e + 00 3.5827e + 00
4.3933e − 06 4.5944e − 05 3.0054e − 03 1.0108e + 00



A(10) =


4.0024e + 00 8.8499e − 02 −7.0021e + 00 2.1931e + 01
−7.6291e − 03 2.9899e + 00 9.3652e − 01 3.0873e + 00
5.8564e − 04 1.0704e − 02 2.0023e + 00 −3.6041e + 00
−1.1030e − 06 −1.5433e − 05 −1.5097e − 03 1.0054e + 00



115 / 136

A(11) =


4.0013e + 00 6.5271e − 02 −7.0210e + 00 −2.1920e + 01
−5.5640e − 03 2.9933e + 00 9.1729e − 01 −3.1169e + 00
2.9364e − 04 7.1703e − 03 2.0027e + 00 3.6177e + 00
2.7633e − 07 5.1681e − 06 7.5547e − 04 1.0027e + 00



A(12) =


4.0007e + 00 4.9824e − 02 −7.0308e + 00 2.1912e + 01
−4.0958e − 03 2.9956e + 00 9.0396e − 01 3.1390e + 00
1.4710e − 04 4.7964e − 03 2.0024e + 00 −3.6265e + 00
−6.9154e − 08 −1.7274e − 06 −3.7751e − 04 1.0014e + 00



116 / 136

A(13) =


4.0003e + 00 3.9586e − 02 −7.0360e + 00 −2.1908e + 01
−3.0339e − 03 2.9971e + 00 8.9458e − 01 −3.1558e + 00
7.3645e − 05 3.2052e − 03 2.0019e + 00 3.6322e + 00
1.7298e − 08 5.7677e − 07 1.8857e − 04 1.0007e + 00



A(14) =


4.0002e + 00 3.2819e − 02 −7.0388e + 00 2.1905e + 01
−2.2566e − 03 2.9981e + 00 8.8788e − 01 3.1686e + 00
3.6855e − 05 2.1402e − 03 2.0014e + 00 −3.6359e + 00
−4.3255e − 09 −1.9245e − 07 −9.4197e − 05 1.0003e + 00



117 / 136

A(15) =


4.0001e + 00 2.8358e − 02 −7.0404e + 00 −2.1902e + 01
−1.6832e − 03 2.9987e + 00 8.8305e − 01 −3.1784e + 00
1.8438e − 05 1.4284e − 03 2.0010e + 00 3.6383e + 00
1.0815e − 09 6.4192e − 08 4.7062e − 05 1.0002e + 00



A(16) =


4.0001e + 00 2.5426e − 02 −7.0413e + 00 2.1901e + 01
−1.2577e − 03 2.9991e + 00 8.7953e − 01 3.1859e + 00
9.2228e − 06 9.5295e − 04 2.0007e + 00 −3.6399e + 00
−2.7039e − 10 −2.1406e − 08 −2.3517e − 05 1.0001e + 00



118 / 136

A(17) =


4.0000e + 00 2.3503e − 02 −7.0418e + 00 −2.1900e + 01
−9.4099e − 04 2.9994e + 00 8.7697e − 01 −3.1917e + 00
4.6126e − 06 6.3562e − 04 2.0005e + 00 3.6409e + 00
6.7600e − 11 7.1371e − 09 1.1754e − 05 1.0000e + 00



A(18) =


4.0000e + 00 2.2246e − 02 −7.0422e + 00 2.1899e + 01
−7.0459e − 04 2.9996e + 00 8.7508e − 01 3.1960e + 00
2.3067e − 06 4.2388e − 04 2.0003e + 00 −3.6416e + 00
−1.6900e − 11 −2.3794e − 09 −5.8750e − 06 1.0000e + 00



119 / 136

A(19) =


4.0000e + 00 2.1427e − 02 −7.0424e + 00 −2.1898e + 01
−5.2787e − 04 2.9997e + 00 8.7369e − 01 −3.1994e + 00
1.1535e − 06 2.8265e − 04 2.0002e + 00 3.6421e + 00
4.2251e − 12 7.9321e − 10 2.9369e − 06 1.0000e + 00



A(20) =


4.0000e + 00 2.0896e − 02 −7.0425e + 00 2.1898e + 01
−3.9562e − 04 2.9998e + 00 8.7266e − 01 3.2019e + 00
5.7679e − 07 1.8846e − 04 2.0002e + 00 −3.6424e + 00
−1.0563e − 12 −2.6442e − 10 −1.4682e − 06 1.0000e + 00



120 / 136

Looking at the element-wise quotients of the last two matrices, one recognizes the
convergence rates claimed in (3.2).

A(20)./A(19) =


1.0000 0.9752 1.0000 −1.0000
0.7495 1.0000 0.9988 −1.0008
0.5000 0.6668 1.0000 −1.0001
−0.2500 −0.3334 −0.4999 1.0000


The elements above and on the diagonal are relatively stable.
If we run the same little MATLAB script but with the initial diagonal matrix D replaced by

D = diag(5, 2, 2, 1),

then we obtain:

121 / 136

A(19) =


5.0000e+00 4.0172e+00 −9.7427e+00 −3.3483e+01
−4.2800e−08 2.0000e+00 2.1100e−05 −4.3247e+00
1.3027e−08 7.0605e−08 2.0000e+00 2.1769e+00
8.0101e−14 −2.4420e−08 4.8467e−06 1.0000e+00



122 / 136

A(20) =


5.0000e+00 4.0172e+00 −9.7427e+00 3.3483e+01
−1.7120e−08 2.0000e+00 1.0536e−05 4.3247e+00
5.2106e−09 3.3558e−08 2.0000e+00 −2.1769e+00
−1.6020e−14 1.2210e−08 −2.4234e−06 1.0000e+00


So, again the eigenvalues are visible on the diagonal of A(20). The element-wise quotients of
A(20) relative to A(19) are:

123 / 136

A(20)

A(19)
=


1.0000 1.0000 1.0000 −1.0000
0.4000 1.0000 0.4992 −1.0000
0.4000 0.4754 1.0000 −1.0000
−0.2000 −0.5000 −0.5000 1.0000



A(20)./A(19) =


1.0000 1.0000 1.0000 −1.0000
0.4000 1.0000 0.4993 −1.0000
0.4000 0.4753 1.0000 −1.0000
−0.2000 −0.5000 −0.5000 1.0000



124 / 136

Notice that equation (3.2) does not state a convergence rate for the element at position (3, 2).

These small numerical experiments demonstrate that the convergence rates given in (3.2) are
indeed observed during an actual run of the basic QR algorithm.

The conclusions we can draw from this are the following:

125 / 136

1. The convergence of the algorithm is slow. In fact, it can be arbitrarily slow if
eigenvalues are very close to each other.

2. The algorithm is expensive. Each iteration step requires the computation of the QR
factorization of a full n × n matrix, i.e., each single iteration step has a complexity of
O(n3).

Even if we assume that the number of steps is proportional to n, the total complexity
would be O(n4). The latter assumption is not even guaranteed, as mentioned in point 1.

126 / 136

In the following, we aim to improve on both issues. First, we seek a matrix structure that is
preserved by the QR algorithm and that reduces the cost of a single iteration step.

Then, we want to enhance the convergence properties of the algorithm.

127 / 136

Given a real matrix A ∈ Rn×n, we aim to find an orthogonal matrix Q ∈ Rn×n such that

H = QTAQ

where H is an upper Hessenberg matrix (i.e., all entries below the first subdiagonal are zero).

This is achieved through a series of similarity transformations using Householder reflectors.

128 / 136

Hessenberg Reduction Algorithm

For k = 1 to n − 2, perform the following:

1. Let x = Ak+1:n,k ∈ Rn−k be the subvector of the k-th column of A, starting from the
(k + 1)-th row.

2. Construct a Householder reflector Hk = I − 2 vvT

vT v
, where v = x + sign(x1)∥x∥2e1, and e1

is the first basis vector in Rn−k .

3. Expand Hk to size n × n by embedding it into an identity matrix:

Qk =

[
Ik 0
0 Hk

]
4. Apply the similarity transformation:

A← QT
k AQk

5. Accumulate Q = Q1Q2 · · ·Qn−2

129 / 136

At the end of this process, the matrix A is transformed into an upper Hessenberg matrix H,
and the orthogonal matrix Q satisfies:

H = QTAQ

• The transformation preserves eigenvalues because it is a similarity transformation.

• Only n − 2 Householder reflectors are required.

• The resulting Hessenberg matrix is the starting point for the Implicit QR Algorithm.

Each Householder transformation affects an (n − k)× (n − k) submatrix, requiring about
4(n − k)2 flops.

Total cost:
n−2∑
k=1

4(n − k)2 ≈ 10

3
n3 flops

130 / 136

Example: Hessenberg Reduction via Householder Reflector

Given Matrix
Let

A =

 4 1 −2
1 2 0
−2 0 3


We aim to reduce A to upper Hessenberg form using a Householder similarity transformation.
We want to zero out the (3, 1) entry. Let

x =

[
1
−2

]
(the subvector of column 1 below the diagonal)

131 / 136

Step 2: Construct Householder Vector

Compute

v = x + ∥x∥2 · e1 =
[
1
−2

]
+
√
12 + (−2)2 ·

[
1
0

]
=

[
1
−2

]
+
√
5 ·
[
1
0

]
=

[
1 +
√
5

−2

]
Normalize v :

v =
1

∥v∥2

[
1 +
√
5

−2

]

132 / 136

Step 3: Form the Householder Matrix

Let
H = I − 2vvT

embedded into the identity matrix as:

Q =

1 0 0
0 ∗ ∗
0 ∗ ∗


We apply the similarity transformation:

H = QTAQ

The resulting matrix H will have the form:

H =

∗ ∗ ∗∗ ∗ ∗
0 ∗ ∗


133 / 136

QR Algorithm with Shifts Flowchart
Start

Initialize matrix A(0)

Choose shift µk

Compute QR decomposition: A(k) − µk I = Q(k)R(k)

Update matrix: A(k+1) = R(k)Q(k) + µk I

Convergence?

Stop

Next iteration k ← k + 1

Yes

No

134 / 136

QR Algorithm with Shifts

QR Algorithm with Shifts [1] Input: Matrix A, tolerance ε, maximum iterations max iter

Initialize A(0) ← A, k ← 0 k < max iter Choose shift µk = a
(k)
nn (bottom-right element)

Compute QR decomposition: A(k) − µk I = Q(k)R(k) Update matrix: A(k+1) = R(k)Q(k) + µk I
all off-diagonal entries of A(k+1) are less than ε break Convergence achieved k ← k + 1
Output: Approximate eigenvalues are the diagonal elements of A(k+1)

135 / 136

Thank You!

136 / 136

	Classical Gram-Schmidt and QR Decomposition
	Numerically Stable QR via Modified Gram-Schmidt
	QR Decomposition via Gram-Schmidt
	Continuing Example 3: Compute Av1 and Av2
	The Full SVD
	An Extreme Matrix Example

	Least Squares Solutions via SVD
	SVD and the Moore-Penrose Pseudoinverse
	Eigenvalue Instability vs. Singular Value Stability

	QR-Algorithm for computing Eigenvalues
	The Basic QR Algorithm
	Algorithm 4.1: Basic QR Algorithm
	Numerical Experiments
	Similarity Transformation to Hessenberg Form
	Remarks
	Flop Count
	Step 1: Target Subvector

